498 research outputs found

    Wave propagation in one-dimensional nonlinear acoustic metamaterials

    Full text link
    The propagation of waves in the nonlinear acoustic metamaterials (NAMs) is fundamentally different from that in the conventional linear ones. In this article we consider two one-dimensional NAM systems featuring respectively a diatomic and a tetratomic meta unit-cell. We investigate the attenuation of the wave, the band structure and the bifurcations to demonstrate novel nonlinear effects, which can significantly expand the bandwidth for elastic wave suppression and cause nonlinear wave phenomena. Harmonic averaging approach, continuation algorithm, Lyapunov exponents are combined to study the frequency responses, the nonlinear modes, bifurcations of periodic solutions and chaos. The nonlinear resonances are studied and the influence of damping on hyper-chaotic attractors is evaluated. Moreover, a "quantum" behavior is found between the low-energy and high-energy orbits. This work provides an important theoretical base for the further understandings and applications of NAMs

    Direct Acyclic Graph based Ledger for Internet of Things: Performance and Security Analysis

    Get PDF
    Direct Acyclic Graph (DAG)-based ledger and the corresponding consensus algorithm has been identified as a promising technology for Internet of Things (IoT). Compared with Proof-of-Work (PoW) and Proof-of-Stake (PoS) that have been widely used in blockchain, the consensus mechanism designed on DAG structure (simply called as DAG consensus) can overcome some shortcomings such as high resource consumption, high transaction fee, low transaction throughput and long confirmation delay. However, the theoretic analysis on the DAG consensus is an untapped venue to be explored. To this end, based on one of the most typical DAG consensuses, Tangle, we investigate the impact of network load on the performance and security of the DAG-based ledger. Considering unsteady network load, we first propose a Markov chain model to capture the behavior of DAG consensus process under dynamic load conditions. The key performance metrics, i.e., cumulative weight and confirmation delay are analysed based on the proposed model. Then, we leverage a stochastic model to analyse the probability of a successful double-spending attack in different network load regimes. The results can provide an insightful understanding of DAG consensus process, e.g., how the network load affects the confirmation delay and the probability of a successful attack. Meanwhile, we also demonstrate the trade-off between security level and confirmation delay, which can act as a guidance for practical deployment of DAG-based ledgers.Comment: accepted by IEEE Transactions on Networkin

    Synthesis of new zeolite structures

    Full text link
    [EN] The search for new zeolites is of continuous interest in the field of zeolite science because of their widespread application in catalysis and adsorption¿separation. To this end, considerable efforts have been devoted to the preparation of new zeolites with novel porous architectures and compositions. Taking account of the key factors governing the formation of zeolites (e.g., guest species, framework elements, construction processes, etc.), several synthetic strategies have been developed recently. These allow the discovery of many new zeolites with unprecedented structural features, such as hierarchical pores, odd-ring numbers (11-, 15-rings), extra-large pores (16-, 18-, 20-, 28-, and 30-rings), chiral pores, and extremely complex framework topologies, etc. In this review, we will present the advances in the synthesis of new zeolite structures in the last decade, which are achieved by utilization of the synthetic strategies based on pre-designed structure-directing agents, heteroatom substitution, and topotactic transformations.Li, J.; Corma Canós, A.; Yu, J. (2015). Synthesis of new zeolite structures. Chemical Society Reviews. 44(20):7112-7127. doi:10.1039/c5cs00023hS71127127442

    Applications of Zeolites to C1 Chemistry: Recent Advances, Challenges, and Opportunities

    Full text link
    [EN] C1 chemistry, which is the catalytic transformation of C1 molecules including CO, CO2, CH4, CH3OH, and HCOOH, plays an important role in providing energy and chemical supplies while meeting environmental requirements. Zeolites are highly efficient solid catalysts used in the chemical industry. The design and development of zeolite-based mono-, bi-, and multifunctional catalysts has led to a booming application of zeolite-based catalysts to C1 chemistry. Combining the advantages of zeolites and metallic catalytic species has promoted the catalytic production of various hydrocarbons (e.g., methane, light olefins, aromatics, and liquid fuels) and oxygenates (e.g., methanol, dimethyl ether, formic acid, and higher alcohols) from C1 molecules. The key zeolite descriptors that influence catalytic performance, such as framework topologies, nanoconfinement effects, Bronsted acidities, secondary-pore systems, particle sizes, extraframework cations and atoms, hydrophobicity and hydrophilicity, and proximity between acid and metallic sites are discussed to provide a deep understanding of the significance of zeolites to C1 chemistry. An outlook regarding challenges and opportunities for the conversion of C1 resources using zeolite-based catalysts to meet emerging energy and environmental demands is also presented.The authors thank the National Natural Science Foundation of China (Grants 21920102005, 21835002, and 21621001), the National Key Research and Development Program of China (Grant 2016YFB0701100), the 111 Project of China (B17020), and the Spanish Government through "Severo Ochoa" (SEV-2016-0683, MINECO) and PGC2018-101247-B-I00 for supporting this work.Zhang, Q.; Yu, J.; Corma Canós, A. (2020). Applications of Zeolites to C1 Chemistry: Recent Advances, Challenges, and Opportunities. Advanced Materials. 32(44):1-31. https://doi.org/10.1002/adma.202002927S1313244Zhou, W., Cheng, K., Kang, J., Zhou, C., Subramanian, V., Zhang, Q., & Wang, Y. (2019). New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chemical Society Reviews, 48(12), 3193-3228. doi:10.1039/c8cs00502hMartínez-Vargas, D. X., Sandoval-Rangel, L., Campuzano-Calderon, O., Romero-Flores, M., Lozano, F. J., Nigam, K. D. P., … Montesinos-Castellanos, A. (2019). Recent Advances in Bifunctional Catalysts for the Fischer–Tropsch Process: One-Stage Production of Liquid Hydrocarbons from Syngas. Industrial & Engineering Chemistry Research, 58(35), 15872-15901. doi:10.1021/acs.iecr.9b01141Du, C., Lu, P., & Tsubaki, N. (2019). Efficient and New Production Methods of Chemicals and Liquid Fuels by Carbon Monoxide Hydrogenation. ACS Omega, 5(1), 49-56. doi:10.1021/acsomega.9b03577Tomkins, P., Ranocchiari, M., & van Bokhoven, J. A. (2017). Direct Conversion of Methane to Methanol under Mild Conditions over Cu-Zeolites and beyond. Accounts of Chemical Research, 50(2), 418-425. doi:10.1021/acs.accounts.6b00534Dai, W., Wang, X., Wu, G., Guan, N., Hunger, M., & Li, L. (2011). Methanol-to-Olefin Conversion on Silicoaluminophosphate Catalysts: Effect of Brønsted Acid Sites and Framework Structures. ACS Catalysis, 1(4), 292-299. doi:10.1021/cs200016uGaladima, A., & Muraza, O. (2015). Recent Developments on Silicoaluminates and Silicoaluminophosphates in the Methanol-to-Propylene Reaction: A Mini Review. Industrial & Engineering Chemistry Research, 54(18), 4891-4905. doi:10.1021/acs.iecr.5b00338Preuster, P., & Albert, J. (2018). Biogenic Formic Acid as a Green Hydrogen Carrier. Energy Technology, 6(3), 501-509. doi:10.1002/ente.201700572Onishi, N., Iguchi, M., Yang, X., Kanega, R., Kawanami, H., Xu, Q., & Himeda, Y. (2018). Development of Effective Catalysts for Hydrogen Storage Technology Using Formic Acid. Advanced Energy Materials, 9(23), 1801275. doi:10.1002/aenm.201801275Yarulina, I., Chowdhury, A. D., Meirer, F., Weckhuysen, B. M., & Gascon, J. (2018). Recent trends and fundamental insights in the methanol-to-hydrocarbons process. Nature Catalysis, 1(6), 398-411. doi:10.1038/s41929-018-0078-5Valentini, F., Kozell, V., Petrucci, C., Marrocchi, A., Gu, Y., Gelman, D., & Vaccaro, L. (2019). Formic acid, a biomass-derived source of energy and hydrogen for biomass upgrading. Energy & Environmental Science, 12(9), 2646-2664. doi:10.1039/c9ee01747jSun, L., Wang, Y., Guan, N., & Li, L. (2019). Methane Activation and Utilization: Current Status and Future Challenges. Energy Technology, 8(8), 1900826. doi:10.1002/ente.201900826Liu, J., He, Y., Yan, L., Ma, C., Zhang, C., Xiang, H., … Li, Y. (2020). Nano-ZrO2 as hydrogenation phase in bi-functional catalyst for syngas aromatization. Fuel, 263, 116803. doi:10.1016/j.fuel.2019.116803Li, W., He, Y., Li, H., Shen, D., Xing, C., & Yang, R. (2017). Spatial confinement effects of zeolite-based micro-capsule catalyst on tuned Fischer-Tropsch synthesis product distribution. Catalysis Communications, 98, 98-101. doi:10.1016/j.catcom.2017.05.008Lin, Q., Zhang, Q., Yang, G., Chen, Q., Li, J., Wei, Q., … Tsubaki, N. (2016). Insights into the promotional roles of palladium in structure and performance of cobalt-based zeolite capsule catalyst for direct synthesis of C5–C11 iso-paraffins from syngas. Journal of Catalysis, 344, 378-388. doi:10.1016/j.jcat.2016.10.012Kang, J., Wang, X., Peng, X., Yang, Y., Cheng, K., Zhang, Q., & Wang, Y. (2016). Mesoporous Zeolite Y-Supported Co Nanoparticles as Efficient Fischer–Tropsch Catalysts for Selective Synthesis of Diesel Fuel. Industrial & Engineering Chemistry Research, 55(51), 13008-13019. doi:10.1021/acs.iecr.6b03810Cai, M., Palčić, A., Subramanian, V., Moldovan, S., Ersen, O., Valtchev, V., … Khodakov, A. Y. (2016). Direct dimethyl ether synthesis from syngas on copper–zeolite hybrid catalysts with a wide range of zeolite particle sizes. Journal of Catalysis, 338, 227-238. doi:10.1016/j.jcat.2016.02.025Schwach, P., Pan, X., & Bao, X. (2017). Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects. Chemical Reviews, 117(13), 8497-8520. doi:10.1021/acs.chemrev.6b00715Li, Z., & Xu, Q. (2017). Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid. Accounts of Chemical Research, 50(6), 1449-1458. doi:10.1021/acs.accounts.7b00132Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. doi:10.1016/j.ccr.2011.03.014Li, Y., Li, L., & Yu, J. (2017). Applications of Zeolites in Sustainable Chemistry. Chem, 3(6), 928-949. doi:10.1016/j.chempr.2017.10.009Database of Zeolite Structures http://www.iza‐structure.org/databases/(accessed: May 2020).Kasipandi, S., & Bae, J. W. (2019). Recent Advances in Direct Synthesis of Value‐Added Aromatic Chemicals from Syngas by Cascade Reactions over Bifunctional Catalysts. Advanced Materials, 31(34), 1803390. doi:10.1002/adma.201803390Masudi, A., Jusoh, N. W. C., & Muraza, O. (2020). Opportunities for less-explored zeolitic materials in the syngas-to-olefins pathway over nanoarchitectured catalysts: a mini review. Catalysis Science & Technology, 10(6), 1582-1596. doi:10.1039/c9cy01875aSaravanan, K., Ham, H., Tsubaki, N., & Bae, J. W. (2017). Recent progress for direct synthesis of dimethyl ether from syngas on the heterogeneous bifunctional hybrid catalysts. Applied Catalysis B: Environmental, 217, 494-522. doi:10.1016/j.apcatb.2017.05.085Sun, Y., Han, X., & Zhao, Z. (2019). Direct coating copper–zinc–aluminum oxalate with H-ZSM-5 to fabricate a highly efficient capsule-structured bifunctional catalyst for dimethyl ether production from syngas. Catalysis Science & Technology, 9(14), 3763-3770. doi:10.1039/c9cy00980aLiu, C., Liu, S., Zhou, H., Su, J., Jiao, W., Zhang, L., … Xie, Z. (2019). Selective conversion of syngas to aromatics over metal oxide/HZSM-5 catalyst by matching the activity between CO hydrogenation and aromatization. Applied Catalysis A: General, 585, 117206. doi:10.1016/j.apcata.2019.117206Friedel, R. A., & Anderson, R. B. (1950). Composition of Synthetic Liquid Fuels. I. Product Distribution and Analysis of C5—C8 Paraffin Isomers from Cobalt Catalyst1. Journal of the American Chemical Society, 72(3), 1212-1215. doi:10.1021/ja01159a039Puskas, I., & Hurlbut, R. . (2003). Comments about the causes of deviations from the Anderson–Schulz–Flory distribution of the Fischer–Tropsch reaction products. Catalysis Today, 84(1-2), 99-109. doi:10.1016/s0920-5861(03)00305-5Leckel, D. (2009). Diesel Production from Fischer−Tropsch: The Past, the Present, and New Concepts. Energy & Fuels, 23(5), 2342-2358. doi:10.1021/ef900064cTorres Galvis, H. M., & de Jong, K. P. (2013). Catalysts for Production of Lower Olefins from Synthesis Gas: A Review. ACS Catalysis, 3(9), 2130-2149. doi:10.1021/cs4003436Zhu, Y., Pan, X., Jiao, F., Li, J., Yang, J., Ding, M., … Bao, X. (2017). Role of Manganese Oxide in Syngas Conversion to Light Olefins. ACS Catalysis, 7(4), 2800-2804. doi:10.1021/acscatal.7b00221Xu, Y., Liu, D., & Liu, X. (2018). Conversion of syngas toward aromatics over hybrid Fe-based Fischer-Tropsch catalysts and HZSM-5 zeolites. Applied Catalysis A: General, 552, 168-183. doi:10.1016/j.apcata.2018.01.012Yang, G., He, J., Zhang, Y., Yoneyama, Y., Tan, Y., Han, Y., … Tsubaki, N. (2008). Design and Modification of Zeolite Capsule Catalyst, A Confined Reaction Field, and its Application in One-Step Isoparaffin Synthesis from Syngas. Energy & Fuels, 22(3), 1463-1468. doi:10.1021/ef700682yDuyckaerts, N., Trotuş, I.-T., Swertz, A.-C., Schüth, F., & Prieto, G. (2016). In Situ Hydrocracking of Fischer–Tropsch Hydrocarbons: CO-Prompted Diverging Reaction Pathways for Paraffin and α-Olefin Primary Products. ACS Catalysis, 6(7), 4229-4238. doi:10.1021/acscatal.6b00904Jiao, F., Li, J., Pan, X., Xiao, J., Li, H., Ma, H., … Bao, X. (2016). Selective conversion of syngas to light olefins. Science, 351(6277), 1065-1068. doi:10.1126/science.aaf1835Mazonde, B., Cheng, S., Zhang, G., Javed, M., Gao, W., Zhang, Y., … Xing, C. (2018). A solvent-free in situ synthesis of a hierarchical Co-based zeolite catalyst and its application to tuning Fischer–Tropsch product selectivity. Catalysis Science & Technology, 8(11), 2802-2808. doi:10.1039/c8cy00243fVarma, R. L., Bakhshi, N. N., & Mathews, J. F. (1990). Selective synthesis of hydrocarbons from syngas using nickel/ZSM-5 catalysts. Industrial & Engineering Chemistry Research, 29(9), 1753-1757. doi:10.1021/ie00105a002Wang, N., Sun, Q., & Yu, J. (2018). Ultrasmall Metal Nanoparticles Confined within Crystalline Nanoporous Materials: A Fascinating Class of Nanocatalysts. Advanced Materials, 31(1), 1803966. doi:10.1002/adma.201803966Nieskens, D. L. S., Lunn, J. D., & Malek, A. (2018). Understanding the Enhanced Lifetime of SAPO-34 in a Direct Syngas-to-Hydrocarbons Process. ACS Catalysis, 9(1), 691-700. doi:10.1021/acscatal.8b03465Ni, Y., Liu, Y., Chen, Z., Yang, M., Liu, H., He, Y., … Liu, Z. (2018). Realizing and Recognizing Syngas-to-Olefins Reaction via a Dual-Bed Catalyst. ACS Catalysis, 9(2), 1026-1032. doi:10.1021/acscatal.8b04794Wang, S., Wang, P., Shi, D., He, S., Zhang, L., Yan, W., … Fan, W. (2020). Direct Conversion of Syngas into Light Olefins with Low CO2 Emission. ACS Catalysis, 10(3), 2046-2059. doi:10.1021/acscatal.9b04629Liu, T., Lu, T., Yang, M., Zhou, L., Yang, X., Gao, B., & Su, Y. (2019). Enhanced Catalytic Performance of CuO–ZnO–Al2O3/SAPO-5 Bifunctional Catalysts for Direct Conversion of Syngas to Light Hydrocarbons and Insights into the Role of Zeolite Acidity. Catalysis Letters, 149(12), 3338-3348. doi:10.1007/s10562-019-02901-9Li, N., Jiao, F., Pan, X., Ding, Y., Feng, J., & Bao, X. (2018). Size Effects of ZnO Nanoparticles in Bifunctional Catalysts for Selective Syngas Conversion. ACS Catalysis, 9(2), 960-966. doi:10.1021/acscatal.8b04105Arslan, M. T., Qureshi, B. A., Gilani, S. Z. A., Cai, D., Ma, Y., Usman, M., … Wei, F. (2019). Single-Step Conversion of H2-Deficient Syngas into High Yield of Tetramethylbenzene. ACS Catalysis, 9(3), 2203-2212. doi:10.1021/acscatal.8b04548Su, J., Wang, D., Wang, Y., Zhou, H., Liu, C., Liu, S., … He, M. (2018). Direct Conversion of Syngas into Light Olefins over Zirconium-Doped Indium(III) Oxide and SAPO-34 Bifunctional Catalysts: Design of Oxide Component and Construction of Reaction Network. ChemCatChem, 10(7), 1536-1541. doi:10.1002/cctc.201702054Liu, X., Zhou, W., Yang, Y., Cheng, K., Kang, J., Zhang, L., … Wang, Y. (2018). Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates. Chemical Science, 9(20), 4708-4718. doi:10.1039/c8sc01597jCheng, K., Zhou, W., Kang, J., He, S., Shi, S., Zhang, Q., … Wang, Y. (2017). Bifunctional Catalysts for One-Step Conversion of Syngas into Aromatics with Excellent Selectivity and Stability. Chem, 3(2), 334-347. doi:10.1016/j.chempr.2017.05.007Plana-Pallejà, J., Abelló, S., Berrueco, C., & Montané, D. (2016). Effect of zeolite acidity and mesoporosity on the activity of Fischer–Tropsch Fe/ZSM-5 bifunctional catalysts. Applied Catalysis A: General, 515, 126-135. doi:10.1016/j.apcata.2016.02.004Zhao, B., Zhai, P., Wang, P., Li, J., Li, T., Peng, M., … Ma, D. (2017). Direct Transformation of Syngas to Aromatics over Na-Zn-Fe 5 C 2 and Hierarchical HZSM-5 Tandem Catalysts. Chem, 3(2), 323-333. doi:10.1016/j.chempr.2017.06.017Yang, X., Wang, R., Yang, J., Qian, W., Zhang, Y., Li, X., … Chen, D. (2020). Exploring the Reaction Paths in the Consecutive Fe-Based FT Catalyst–Zeolite Process for Syngas Conversion. ACS Catalysis, 10(6), 3797-3806. doi:10.1021/acscatal.9b05449Huang, J., Wang, W., Fei, Z., Liu, Q., Chen, X., Zhang, Z., … Qiao, X. (2019). Enhanced Light Olefin Production in Chloromethane Coupling over Mg/Ca Modified Durable HZSM-5 Catalyst. Industrial & Engineering Chemistry Research, 58(13), 5131-5139. doi:10.1021/acs.iecr.8b05544Li, J., He, Y., Tan, L., Zhang, P., Peng, X., Oruganti, A., … Tsubaki, N. (2018). Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology. Nature Catalysis, 1(10), 787-793. doi:10.1038/s41929-018-0144-zSubramanian, V., Zholobenko, V. L., Cheng, K., Lancelot, C., Heyte, S., Thuriot, J., … Khodakov, A. Y. (2015). The Role of Steric Effects and Acidity in the Direct Synthesis of iso -Paraffins from Syngas on Cobalt Zeolite Catalysts. ChemCatChem, 8(2), 380-389. doi:10.1002/cctc.201500777Jiao, F., Pan, X., Gong, K., Chen, Y., Li, G., & Bao, X. (2018). Shape‐Selective Zeolites Promote Ethylene Formation from Syngas via a Ketene Intermediate. Angewandte Chemie International Edition, 57(17), 4692-4696. doi:10.1002/anie.201801397Li, N., Jiao, F., Pan, X., Chen, Y., Feng, J., Li, G., & Bao, X. (2019). High‐Quality Gasoline Directly from Syngas by Dual Metal Oxide–Zeolite (OX‐ZEO) Catalysis. Angewandte Chemie International Edition, 58(22), 7400-7404. doi:10.1002/anie.201902990Boronat, M., & Corma, A. (2019). What Is Measured When Measuring Acidity in Zeolites with Probe Molecules? ACS Catalysis, 9(2), 1539-1548. doi:10.1021/acscatal.8b04317Li, C., Vidal-Moya, A., Miguel, P. J., Dedecek, J., Boronat, M., & Corma, A. (2018). Selective Introduction of Acid Sites in Different Confined Positions in ZSM-5 and Its Catalytic Implications. ACS Catalysis, 8(8), 7688-7697. doi:10.1021/acscatal.8b02112Su, J., Zhou, H., Liu, S., Wang, C., Jiao, W., Wang, Y., … He, M. (2019). Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrOx/AlPO-18 bifunctional catalysts. Nature Communications, 10(1). doi:10.1038/s41467-019-09336-1Noh, G., Shi, Z., Zones, S. I., & Iglesia, E. (2018). Isomerization and β-scission reactions of alkanes on bifunctional metal-acid catalysts: Consequences of confinement and diffusional constraints on reactivity and selectivity. Journal of Catalysis, 368, 389-410. doi:10.1016/j.jcat.2018.03.033Noh, G., Zones, S. I., & Iglesia, E. (2018). Consequences of Acid Strength and Diffusional Constraints for Alkane Isomerization and β-Scission Turnover Rates and Selectivities on Bifunctional Metal-Acid Catalysts. The Journal of Physical Chemistry C, 122(44), 25475-25497. doi:10.1021/acs.jpcc.8b08460Yang, J., Pan, X., Jiao, F., Li, J., & Bao, X. (2017). Direct conversion of syngas to aromatics. Chemical Communications, 53(81), 11146-11149. doi:10.1039/c7cc04768aQiu, T., Wang, L., Lv, S., Sun, B., Zhang, Y., Liu, Z., … Li, J. (2017). SAPO-34 zeolite encapsulated Fe3C nanoparticles as highly selective Fischer-Tropsch catalysts for the production of light olefins. Fuel, 203, 811-816. doi:10.1016/j.fuel.2017.05.043Di, Z., Zhao, T., Feng, X., & Luo, M. (2018). A Newly Designed Core-Shell-Like Zeolite Capsule Catalyst for Synthesis of Light Olefins from Syngas via Fischer–Tropsch Synthesis Reaction. Catalysis Letters, 149(2), 441-448. doi:10.1007/s10562-018-2624-9Přech, J., Strossi Pedrolo, D. R., Marcilio, N. R., Gu, B., Peregudova, A. S., Mazur, M., … Khodakov, A. Y. (2020). Core–Shell Metal Zeolite Composite Catalysts for In Situ Processing of Fischer–Tropsch Hydrocarbons to Gasoline Type Fuels. ACS Catalysis, 10(4), 2544-2555. doi:10.1021/acscatal.9b04421Weber, J. L., Krans, N. A., Hofmann, J. P., Hensen, E. J. M., Zecevic, J., de Jongh, P. E., & de Jong, K. P. (2020). Effect of proximity and support material on deactivation of bifunctional catalysts for the conversion of synthesis gas to olefins and aromatics. Catalysis Today, 342, 161-166. doi:10.1016/j.cattod.2019.02.002Wang, T., Xu, Y., Shi, C., Jiang, F., Liu, B., & Liu, X. (2019). Direct production of aromatics from syngas over a hybrid FeMn Fischer–Tropsch catalyst and HZSM-5 zeolite: local environment effect and mechanism-directed tuning of the aromatic selectivity. Catalysis Science & Technology, 9(15), 3933-3946. doi:10.1039/c9cy00750dZhang, Q., Chen, G., Wang, Y., Chen, M., Guo, G., Shi, J., … Yu, J. (2018). High-Quality Single-Crystalline MFI-Type Nanozeolites: A Facile Synthetic Strategy and MTP Catalytic Studies. Chemistry of Materials, 30(8), 2750-2758. doi:10.1021/acs.chemmater.8b00527Zhang, Q., Mayoral, A., Terasaki, O., Zhang, Q., Ma, B., Zhao, C., … Yu, J. (2019). Amino Acid-Assisted Construction of Single-Crystalline Hierarchical Nanozeolites via Oriented-Aggregation and Intraparticle Ripening. Journal of the American Chemical Society, 141(9), 3772-3776. doi:10.1021/jacs.8b11734Wen, C., Wang, C., Chen, L., Zhang, X., Liu, Q., & Ma, L. (2019). Effect of hierarchical ZSM-5 zeolite support on direct transformation from syngas to aromatics over the iron-based catalyst. Fuel, 244, 492-498. doi:10.1016/j.fuel.2019.02.041Cheng, K., Zhang, L., Kang, J., Peng, X., Zhang, Q., & Wang, Y. (2014). Selective Transformation of Syngas into Gasoline-Range Hydrocarbons over Mesoporous H-ZSM-5-Supported Cobalt Nanoparticles. Chemistry - A European Journal, 21(5), 1928-1937. doi:10.1002/chem.201405277Peng, X., Cheng, K., Kang, J., Gu, B., Yu, X., Zhang, Q., & Wang, Y. (2015). Impact of Hydrogenolysis on the Selectivity of the Fischer-Tropsch Synthesis: Diesel Fuel Production over Mesoporous Zeolite-Y-Supported Cobalt Nanoparticles. Angewandte Chemie International Edition, 54(15), 4553-4556. doi:10.1002/anie.201411708Flores, C., Batalha, N., Ordomsky, V. V., Zholobenko, V. L., Baaziz, W., Marcilio, N. R., & Khodakov, A. Y. (2018). Direct Production of Iso-Paraffins from Syngas over Hierarchical Cobalt-ZSM-5 Nanocomposites Synthetized by using Carbon Nanotubes as Sacrificial Templates. ChemCatChem, 10(10), 2291-2299. doi:10.1002/cctc.201701848Li, H., Hou, B., Wang, J., Qin, C., Zhong, M., Huang, X., … Li, D. (2018). Direct conversion of syngas to isoparaffins over hierarchical beta zeolite supported cobalt catalyst for Fischer-Tropsch synthesis. Molecular Catalysis, 459, 106-112. doi:10.1016/j.mcat.2018.08.002Min, J.-E., Kim, S., Kwak, G., Kim, Y. T., Han, S. J., Lee, Y., … Kim, S. K. (2018). Role of mesopores in Co/ZSM-5 for the direct synthesis of liquid fuel by Fischer–Tropsch synthesis. Catalysis Science & Technology, 8(24), 6346-6359. doi:10.1039/c8cy01931bWang, Y., Gao, W., Kazumi, S., Fang, Y., Shi, L., Yoneyama, Y., … Tsubaki, N. (2019). Solvent-free anchoring nano-sized zeolite on layered double hydroxide for highly selective transformation of syngas to gasoline-range hydrocarbons. Fuel, 253, 249-256. doi:10.1016/j.fuel.2019.05.022Xu, Y., Liu, J., Wang, J., Ma, G., Lin, J., Yang, Y., … Ding, M. (2019). Selective Conversion of Syngas to Aromatics over Fe3O4@MnO2 and Hollow HZSM-5 Bifunctional Catalysts. ACS Catalysis, 9(6), 5147-5156. doi:10.1021/acscatal.9b01045Xu, Y., Wang, J., Ma, G., Lin, J., & Ding, M. (2019). Designing of Hollow ZSM-5 with Controlled Mesopore Sizes To Boost Gasoline Production from Syngas. ACS Sustainable Chemistry & Engineering, 7(21), 18125-18132. doi:10.1021/acssuschemeng.9b05217Javed, M., Cheng, S., Zhang, G., Dai, P., Cao, Y., Lu, C., … Shan, S. (2018). Complete encapsulation of zeolite supported Co based core with silicalite-1 shell to achieve high gasoline selectivity in Fischer-Tropsch synthesis. Fuel, 215, 226-231. doi:10.1016/j.fuel.2017.10.042Javed, M., Zhang, G., Gao, W., Cao, Y., Dai, P., Ji, X., … Sun, J. (2019). From hydrophilic to hydrophobic: A promising approach to tackle high CO2 selectivity of Fe-based Fischer-Tropsch microcapsule catalysts. Catalysis Today, 330, 39-45. doi:10.1016/j.cattod.2018.08.010Luk, H. T., Mondelli, C., Ferré, D. C., Stewart, J. A., & Pérez-Ramírez, J. (2017). Status and prospects in higher alcohols synthesis from syngas. Chemical Society Reviews, 46(5), 1358-1426
    corecore